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On the cascade in fully developed turbulence.
The propagator approach versus the Markovian description
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Abstract. The aim of the paper is to a provide a link between two approaches that describe the cascade
in fully developed turbulence. Precisely, we show that the propagator approach (B. Castaing) and the
Markovian description (Friedrich & Peinke) are equivalent in the log-normal case. To prove this, we use
an Itô stochastic differential equation in scale – Friedrich & Peinke approach – that can be explicitly
integrated. The solution corresponds to the propagator approach. This is done for scale-invariant cascades
as well as non scale-invariant cascade.

PACS. 47.27.Gs Isotropic turbulence; homogeneous turbulence – 02.50.-r Probability theory, stochastic
processes, and statistics

1 Introduction

Recent works on fully developed turbulence have focused
on the explanation of the energy cascade from large to
small scales and on the problem of intermittency. Two
a priori different models have been developed: the propa-
gator approach and the Markovian description. Although
these approaches seem different, the aim of the paper is
to establish their equivalence. We now recall the two ap-
proaches, beginning with the propagator approach.

In a series of papers [1–3], Castaing developed the
propagator approach to describe the behavior of the prob-
ability density function (p.d.f.) of the velocity increments
in turbulent flows. At large scales r, velocity increments
δvr(t) = v(t + r) − v(t) measured on one component of
the velocity roughly follow a Gaussian distribution. But
when scale r is diminished, a curious phenomenon occurs:
the p.d.f. of the velocity increments exhibits heavier and
heavier tails – this fact contradicts Kolmogorov’s K41 the-
ory [4]. This could be an explanation of intermittency. To
take into account this experimental result, Castaing pro-
posed to relate the p.d.f. on one scale to a mixing of the
p.d.f. on a larger scale. Precisely, he assumed that there
exists a sequence η < rk < rk−1 < . . . < r1 < r0 = L of
scales such that

pn(x) =
∫
Gn,n−1(α)pn−1

(x
α

) dα
α

(1)

where pn stands for the p.d.f. of the velocity increments
at scale rn, and where Gn,n−1 may be called the propa-
gator. If Gn,n−1 does not depend on scales, then it is an
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infinitely divisible p.d.f. This hypothesis has been checked
with some success on real experiments [5–7]. Note that
equation (1) is a so-called affine convolution, and the re-
sulting p.d.f. is the p.d.f. of the product of two indepen-
dent random variables. This leads to the term multiplica-
tive cascade. In this interpretation, the velocity increments
are random variables that cascade from large to small
scales via multiplication by a random variable. We will call
indifferently propagator the random variable or its p.d.f.

Another approach has been developed more recently
by Friedrich and Peinke [8–10]. Their idea was to describe
the properties of the cascade by a Fokker-Planck equa-
tion. They verified on a set of experimental data that the
so-called Kramers-Moyal coefficients [11] of order greater
or equal to three vanish when estimated on the velocity
increments. They also verified that the p.d.f. of the veloc-
ity increments satisfies correctly a Chapman-Kolmogorov
equation through scales (in the inertial range). The con-
clusion of their works is that the cascade in turbulence is
correctly described by a Markovian process, characterized
by a drift and a diffusion term. Thus, the p.d.f. of the
velocity increments satisfies a Fokker-Planck equation in
scale.

In [12] p. 223, Castaing shows that in the log-normal
case, a similar Fokker-Planck equation can be derived from
the propagator approach. Furthermore, Donkov et al. re-
cently proved that the solution of the Fokker-Planck equa-
tion proposed by Friedrich and Peinke satisfies an integral
equation which is nothing but the propagator description
of Castaing [13].

In this paper, we establish the same kind of links, tak-
ing as a starting point a stochastic differential equation
in scale. Note that this approach has also been followed
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recently by Marcq and Naert to describe the energy
cascade [14].

This paper is organized as follows. In the next section,
we recall some basic facts on stochastic differential equa-
tions and introduce our notations. Then, we describe the
properties of the cascade as a stochastic differential equa-
tion and establish the link between the Castaing and the
Friedrich and Peinke approaches. Then, we give the exten-
sion of the formalism to non scale-invariant cascades, and
we finish the paper by discussing some points developed
here.

2 Itô stochastic differential equations

Differential equations that involve white Gaussian noise
are usually referred to as Langevin equations. However,
integrating such equations leads to difficult problems –
mostly because Brownian motion is almost surely not dif-
ferentiable –, and a formalism due to Itô puts stochas-
tic differential equations into a well-defined mathematical
framework [15]. Let xt be a stochastic process whose evo-
lution is governed by

dxt = f(xt, t)dt+ g(xt, t)dwt (2)

where wt is a Brownian motion such that E[w2
1] = 1 (E[.]

stands for mathematical expectation or set average). dwt
represents the infinitesimal increments of the Brownian
motion. When f and g are “good” functions, it can be
shown that given a random initial condition xt0 , xt is a
well-defined process. The previous equation is an Itô equa-
tion and must be undersdood in the sense of:

xt = xt0 +
∫ t

t0

f(xu, u)du+
∫ t

t0

g(xu, u)dwu

where
∫
g(xu, u)dwu is a stochastic Itô integral [15].

Note that other interpretations of stochastic differen-
tial equations exist. Among these, the most famous inter-
pretation is that of Stratonovitch that leads to a differ-
ent solution of the stochastic differential equation [15,16].
However, Itô and Stratonovitch differential equations are
linked via Itô lemma, and going from Itô interpretation to
Stratonovitch interpretation amounts to modify the drift
coefficient. Furthermore, when working with drift and dif-
fusion coefficients of a Fokker-Planck equation, the most
natural interpretation is that of Itô [16].

Equation (2) shows that xt is a Markov process. Fur-
thermore, since wt is Gaussian, the probability density
function (p.d.f.) px of xt, given the initial condition, sat-
isfies Fokker-Planck equation

∂tpx(u, t) = −∂u [f(u, t)px(u, t)] +
1
2
∂2
uu

[
g(u, t)2px(u, t)

]
where ∂y stands for ∂/∂y.

We also recall that for a square integrable function h

E

[(∫
h(u)dwu

)2
]

=
∫
h(u)2du.

We will be working with quantities defined in scales.
We could work with velocity increments δvr(t) = v(t +
r)−v(t) at scale r, but we prefer to work with the wavelet
transform. For real valued signals, it is defined as

Da(t) =
∫
xu

1
a
ψ

(
u− t
a

)
du

where a is the scale, and ψ is the wavelet – remember that
to be a wavelet, ψ must have a vanishing integral –. The
physical interpretation of the wavelet transform is that of
a mathematical microscope: the lower the analysing scale,
the finer the analysed structures. For the use of the wavelet
transform in turbulence, we refer to [17] and references
therein.

Setting aside the time variable (we will come back to
this point in the discussion), we now study a Markov pro-
cess in scale defined on the wavelet coefficients Da.

3 A Markovian process in scale

The works of Friedrich and Peinke show that the cascade
in fully developed turbulence may be well-described by a
diffusion Markov process. In other words, the cascade is
well-described by an Itô stochastic differential equation.
Furthermore, the experimental results described in [8,9]
show that the drift and diffusion coefficients may be con-
sidered as affine functions of the velocity increments.

Therefore, we consider the following Itô stochastic dif-
ferential equation that rules the dynamics of the wavelet
coefficients through scales.

dDa = (α(a)Da + β(a))da+ (γ(a)Da + δ(a))dwa. (3)

This equation starts with the initial condition Da0 which
is a random variable. Note that scale goes from a large
scale (a0) to small scales. a0 is usually called the integral
scale at which energy is injected. Experiments show that
wavelet coefficients on large scales are nearly Gaussian,
and therefore, Da0 can be chosen to be Gaussian. Fur-
thermore, a evolves in the inertial range [η, a0], where η is
the so-called Kolmogorov scale where dissipation due to
viscosity becomes dominant.

Note that equation (3) is a nonlinear stochastic dif-
ferential equation (as expected when dealing with turbu-
lence!). Although nonlinear, the equation is rather simple:
it is a so-called bilinear stochastic differential equation,
thus termed because of the presence of Dadwa. In this
description, the cascade is viewed as the diffusion of the
wavelet coefficients through scales.

Of importance with (3) is that, although nonlinear, it
can be integrated [16]. The explicit solution of equation (3)
is given by

Da = Φa,a0

(
Da0 +

∫ a

a0

Φ−1
s,a0

[β(s) − γ(s)δ(s)] ds (4)

+
∫ a

a0

Φ−1
s,a0

δ(s)dws

)
(5)
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where

Φa,a0 = exp
{∫ a

a0

(
α(s) − 1

2
γ(s)2

)
ds+

∫ a

a0

γ(s)dws

}
and where integrals of the type

∫
f(s)dws are Itô stochas-

tic integrals.
We now study the particular case β(a) = 0 and δ(a) =

0. The solution of the equation is now simple, since it reads

Da = Φa,a0Da0 (6)

Φa,a0 = exp
{∫ a

a0

(
α(s)− 1

2
γ(s)2

)
ds+

∫ a

a0

γ(s)dws

}
Φa,a0 is clearly a log-normal random variable. Further-
more, considering that

1) Castaing’s result [12] p. 233 holds: in the log-normal
case, the propagator implies a Fokker-Planck equation
with linear drift and diffusion coefficients,

2) equation (6) holds

we conclude to the equivalence in the log-normal case of
Friedrich and Peinke’s and Castaing’s approches of the
cascade in turbulence.

Let Φa,a0 = exp(Wa,a0). Then Wa,a0 is a Gaussian
random variable whose mean and variance are

m(a, a0) =
∫ a

a0

(
α(s) − 1

2
γ(s)2

)
ds (7)

σ2(a, a0) =
∫ a

a0

γ(s)2ds. (8)

Furthermore, we know that the probability density func-
tion pD(u, a) of the wavelet coefficients on scale a satisfies
the Fokker-Planck equation

−∂apD(u, a) = −∂u [α(a)upD(u, a)]

+
1
2
∂2
uu

[
γ2(a)u2pD(u, a)

]
and that moments of Da, provided they exist, satisfy

−∂aE[Dqa] = qE[Dqa]
{
α(a) +

(q − 1)
2

γ2(a)
}
. (9)

This equation is easily found from the Fokker-Planck
equation. Note the “minus” sign in front of the scale par-
tial derivative: we are going from large scales to small
scales.

Suppose now that we look for a multifractal solution
of (3). Then we know that the higher-order moments of
the wavelet coefficients follow a scaling law of the form
aζ(q), see for example [17]. Inserting aζ(q) in equation (9)
yields

ζ(q) = −qa
{
α(a) +

(q − 1)
2

γ2(a)
}
.

Imposing ζ(q) independent on a for all q leads to the spec-
ification of α and γ. They are found to be

α(a) =
c1
a

γ(a) =
c2√
a

where c1, c2 are constants. Therefore, we find the well-
known form ζ(q) in the log-normal case

ζ(q) = −q(c1 − c22/2)− c22
q2

2
= −qm− σ2q2

2
·

Then, using equations (7-8), the propagator can be
explicitly written as

Φa,a0 = exp

{
m log

(
a

a0

)
+W

√
σ2

2
log
(
a

a0

)}
where W is a zero mean Gaussian random variable with
variance 1.

The conclusion is thus the equivalence between the
Markovian description of the cascade

dDa =
c1Da
a

da+
c2Da√
a

dwa

and the scale-invariant log-normal approach using Cas-
taing’s propagator.

4 Non scale-invariant cascades

In recent works [18,6], Arnéodo et al. have exhibited the
non scale-invariance of the cascade in fully developed tur-
bulence. This result, obtained on two different flows, is
confirmed by the work of Chesnais et al. [7]. One can then
wonder if, in the non scale-invariant case, the propagator
approach and the Markovian description are still equiva-
lent. The aim of the section is to answer the question.

Scale-invariance is revealed by the scaling of the statis-
tics of the propagator. Precisely, the cascade is scale-in-
variant if the propagator depends only on scales a and a0

through log(a/a0). Therefore, scale-invariance is linked to
the usual law of composition of scale �, viz. a1 � a2 =
a1 × a2. Arnéodo et al. call the cascade continuously self-
similar if the statistics of the propagator depend only on
s(a) − s(a0), where s(.) is a monotonic function. Such a
definition is linked to a more general law of composition
of scale, viz. a1�a2 = s−1(s(a1)+s(a2)). It can be shown
that (R+∗,�) is a group.

In this context, the propagator reads

Φa,a0 = exp

{
m(s(a)− s(a0)) +

√
σ2

2
(s(a) − s(a0))W

}
.

Using equations (7, 8) leads to the specification of α and
γ which must be written as

α(a) = c1ṡ(a)
γ(a)2 = c22ṡ(a)

where a dot stands for derivation. Therefore, in the non
scale-invariant case, the propagator and the Markovian
descriptions are still equivalent.

As an example, consider the experimental result ob-
tained by Arnéodo et al. [18,6]. For two different flows,
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function s(a) = (1− a−α)/α provides a close explanation
of the propagator (the graph of m(a, a′) versus s(a)−s(a′)
is linear, see equation (7). Furthermore, the higher the
Reynolds number, the lower the exponent. This case is
equivalent to the stochastic differential equation

dDa =
c1Da
aα+1

da+
c2Da√
aα+1

dwa

which of course gives the scale-invariant cascade if α = 0.

5 Discussion

In this short paper, we have established the correspon-
dence between Castaing’s description of the cascade in tur-
bulence, and Friedrich and Peinke’s ideas on the Marko-
vian cascade.

First, note that the correspondence was predictive.
Indeed, the multiplicative process defined by Bernard
Castaing is a Markov process! However, the description of
Friedrich and Peinke is interesting since it provides a con-
tinuous evolution in scale. Furthermore, we have shown
that results obtained by Arnéodo et al., the non scale-
invariant cascade, can be naturally included in the Marko-
vian description. It suffices to play with the drift and dif-
fusion coefficients.

We come back to the problem of time. It has
been completely omitted in the development. Hence,
the framework discussed here is only descriptive (note
however that transposing the ideas of the propagator
to the discrete wavelet transform leads to constructive
algorithms [19,18,20]). An interesting extension would be
to integrate time in the stochastic differential equation,
but this problem is tedious. For example, the drift and
diffusion coefficients could depend on time, but we would
have to check that the solution of the stochastic differen-
tial equation is a wavelet transform.

The approach discussed here is however limited to the
log-normal case. Other statistics (e.g. log-Poisson) can-
not be taken into account in this formalism. Note however
that point-process-driven stochastic differential equations
exist and may be useful in the context. Furthermore, go-
ing back to equation (3) and its solution, we see that we
have greatly simplified. If the drift and diffusion coefficient
are chosen as affine functions instead of purely linear, the
solution is no longer log-normal. Looking at (5), affine co-
efficients lead to a solution that is the superposition of the
classic propagation and a correction term which should be
worth study.

More precisely, Friedrich and Peinke have shown exper-
imentally that the drift coefficient is linear [8,9]. There-
fore, setting β(a) = 0 in (3) seems reasonable. How-
ever, the measurement of the diffusion coefficient reported
in [8,9] shows that δ(a) should not be set to zero. In that
case, the Markov description and the propagator approach
are no longer equivalent. Furthermore, the higher-order
moments of the wavelet coefficients do not scale anymore
as aζ(q). However, Arnéodo et al. have shown in [18,6]
that the propagator approach is a very good model of the

cascade in the log-normal non scale invariant case. There-
fore, it seems that there is a contradiction if δ(a) 6= 0. This
leads to the question: Is the experimental determination
of δ(a) in [8,9] sufficiently accurate? Indeed, it is possible
that noise induced the non zero δ(a), since this quantity
comes from the estimation of a second order quantity – the
second Kramers-Moyal coefficient. We think that the de-
termination of this quantity is important to validate the
approaches discussed here, and that much processing of
turbulent signals must be carried out.

The authors gratefully acknowledge B. Castaing for fruitful
discussions, O. Michel for his lumbago and M. Grand for her
good English.
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6. A. Arnéodo, J.F. Muzy, S.G. Roux, J. Phys. II France 7,
363–370 (1997).

7. P. Chesnais, P. Abry, J.F. Pinton, Intermittency and co-
herent structures in a swirling flow: a wavelet analysis of
loint pressure and velocity measurements, submitted to
Phys. Fluid (1998).

8. R. Friedrich, J. Peinke, Phys. Rev. Lett. 78, 863–866
(1997).

9. R. Friedrich, J. Peinke, Physica D 102, 147–155 (1997).
10. A. Naert, R. Friedrich, J. Peinke, Phys. Rev. E 56, 6719–

6722 (1997).
11. H. Risken, The Fokker-Planck equation (Springer-Verlag,

Berlin, 1989).
12. Scale invariance and beyond, edited by B. Dubrulle, F.

Graner and D. Sornette (EDP Sciences-Springer, 1995).
13. A.A. Donkov, A.D. Donkov, E.I. Grancharova, The ex-

act solution of one Fokker-Planck type equation used by
R. Friedrich and J. Peinke in the stochastic model of a
turbulent cascade, preprint math-ph 9807010 (1998).

14. P. Marcq, A. Naert, Physica D 124, 368–381 (1998).
15. E. Wong, B. Hajek, Stochastic processes in Engineering

systems (Springer-Verlag, New-York, 1985).
16. P.E. Kloeden, E. Platen, Numerical solutions of stochastic

differential equations (Springer-Verlag, New-York, 1995).
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